gene 1, gene1
Please see the JBrowse view of Dmel\Hsp67Ba for information on other features
To submit a correction to a gene model please use the Contact FlyBase form
AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions with low pLDDT may be unstructured in isolation.
Gene model reviewed during 5.41
Gene model reviewed during 5.46
Gene model reviewed during 5.55
There is only one protein coding transcript and one polypeptide associated with this gene
Click to get a list of regulatory features (enhancers, TFBS, etc.) and gene disruptions (point mutations, indels, etc.) within or overlapping Dmel\Hsp67Ba using the Feature Mapper tool.
The testis specificity index was calculated from modENCODE tissue expression data by Vedelek et al., 2018 to indicate the degree of testis enrichment compared to other tissues. Scores range from -2.52 (underrepresented) to 5.2 (very high testis bias).
Maximal Hsp67Ba transcript expression is reached in white prepupae.
JBrowse - Visual display of RNA-Seq signals
View Dmel\Hsp67Ba in JBrowse3-29
3-23.0
Please Note FlyBase no longer curates genomic clone accessions so this list may not be complete
Please Note This section lists cDNAs and ESTs that fall within the genomic extent of the gene model, which may include cDNAs and ESTs of genes within introns, or of overlapping genes. Please see JBrowse for alignment of the cDNAs and ESTs to the gene model.
For each fully sequenced cDNA the DGRC maintains various forms of the cDNA (e.g tagged or untagged) in several different host vectors for subsequent cloning and expression in Drosophila and Drosophila cell lines.
In unshocked cells Hsp83 is moderately transcribed while transcription from the other heat shock genes is undetectable. Engaged but paused RNA molecules are found at the various Hsp70 and Hsp26 genes but not at the other heat shock genes. Increased transcription of the heat shock genes is observed within 1-2 mins of heat shock and maximal rates were reached within 2-5 minutes. Rates of transcription vary over a 20-fold range.
Exposure of cells to pulses of elevated temperature initiates the heat-shock response. A restricted subset of genes, the Hsp genes, is activated and the majority of transcription and translation is shut down. 3H-uridine incorporation ceases at its usual positions and commences at new puff sites. Preexisting polysomes disaggregate and within a few minutes a new population of polysomes appears containing newly transcribed mRNA; this RNA hybridizes to some of the heat-shock puffs. Similar response inducible by other stressful treatments. The response may be elicited at all stages of the life cycle and in cultured cells.
In contrast to other heat shock genes, the response of Hsp67Ba to stress is modulated during development.
The binding sites for the protein factors required for activation of transcription of Hsp genes are multiple short upstream sequence elements called HSEs or heat shock consensus elements.
Activation of transcription of Hsp genes apparently involves the sequential binding of two or more protein factors in vicinity of TATA box.
Polymerase II dissociates from most chromosome regions and accumulates at the new heat shock puff sites upon heat shock.
Hsp67Ba is transcribed during certain developmental stages in the absence of heat shock.
The effects of heat shock may be abrogated to some degree by pretreatment with a pulse of a slightly lower temperature.
Mitochondrial and histone-gene activities persist transcription and translation.
In polytene cells, during heat shock response, existing puffs regress and a novel group quickly appear at 33B, 63C, 64F, 67B, 70A, 87A, 87C, 93D, 95D.
The heat shock response follows a pulse of 36oC to 40oC; treatments above 40oC inhibit all activity and lead to death; treatments of 30oC-35oC induce heat-shock-protein synthesis without repressing normal protein synthesis.
In polytene cells, during heat shock response, existing puffs regress and a novel group quickly appear at cytological locations 33B, 63C, 64F, 67B, 70A, 87A, 87C, 93D, 95D.