Updated sequence information for this Drosophila species is no longer provided by FlyBase. Gene model annotations for this species are now updated and maintained at NCBI, using the gnomon automated annotation pipeline. See the NCBI page ‘Eukaryotic genomes annotated at NCBI’.
The FlyBase BLAST tool will continue to support queries against the reference genome of this species, but not queries against annotated transcripts or proteins. For the current release, there is no JBrowse or GBrowse view of the gene model annotations for this species.
The FlyBase archived release FB2017_05 includes the last NCBI annotation update for this species that was imported into FlyBase. That sequence data can be accessed from archived gene reports, via the archived GBrowse tool, and via archived bulk-data downloads.
Adh
Please Note This section lists cDNAs and ESTs that fall within the genomic extent of the gene model, which may include cDNAs and ESTs of genes within introns, or of overlapping genes. Please see JBrowse for alignment of the cDNAs and ESTs to the gene model.
For each fully sequenced cDNA the DGRC maintains various forms of the cDNA (e.g tagged or untagged) in several different host vectors for subsequent cloning and expression in Drosophila and Drosophila cell lines.
The frequency distribution of "silent" DNA polymorphisms has been studied in a number of D.simulans and D.pseudoobscura.pseudoobscura genes.
Oviposition sites of mutant females on standard medium and acetic acid supplement medium suggest flies search for oviposition sites they are pre-adapted for.
The phylogenetic relationships and divergence times of 39 drosophilid species have been studied by using the coding region of the Adh gene.
Adh activity in 71 Drosophila species is assayed to determine if the protein plays a key role in the adaptation of species to substrates undergoing alcoholic fermentation.
The in situ localization of Adh transcripts in different species reveals evolved regulatory differences in spatially restricted expression.
A comparison of the number of amino acid replacements to synonymous substitutions between Adh, Dsim\Adh and Dyak\Adh locus was performed to test the neutral theory of protein evolution hypothesis. An excess of replacement substitutions was found suggesting adaptive fixation of selectively advantageous mutations.
The only consistent differences between D.melanogaster and D.simulans are in the pupal RNA level and in late adult gene activity and CRM level.
McDonald and Kreitman (Nature 351: 652--654) claim adaptive mutations are responsible for the evolution of the Adh locus. In a general test of the hypothesis designed to evaluate the average nucleotide substitutions for all pairwise combinations of sequences within and between species, results do not support the conclusion that there is a significant excess of nonsynonymous substitutions resulting from adaptive fixation of mutants.
P-element transformation has been used to perform an interspecific gene transfer experiment. This demonstrated that the expression difference between D.melanogaster and Dsim\Adh gene is due to trans-acting not cis-acting modifiers within the Adh gene.
D.simulans flies are not found in wine cellars: they are less tolerant than D.melanogaster to the ethanol concentration in the air.