Open Close
Delidakis, C., Preiss, A., Hartley, D.A., Artavanis-Tsakonas, S. (1991). Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster.  Genetics 129: 803--823.
FlyBase ID
Publication Type
Research paper

Molecular correlation of the genetic aspects of the function of the neurogenic gene Enhancer of split [E(spl)] has previously been hampered by the densely transcribed nature of the chromosomal region within which it resides. We present data indicating that two distinct molecular species contribute to E(spl) function. Analysis of new E(spl) alleles has allowed us to define two complementing functions within the locus. Subsequent phenotypic analysis of different E(spl) deficiencies combined with P element-transformed constructs has demonstrated that these two functions correspond to: (1) a family of helix-loop-helix (HLH) protein-encoding genes and (2) the single copy gene E(spl) m9/10, whose product shares homology with G-protein beta subunits. The zygotically active E(spl) HLH genes can, at least partially, substitute for one another's functions and their total copy number determines the activity of the locus. E(spl) m9/10 acts synergistically with the E(spl) HLH genes and other neurogenic genes in the process of neurogenesis. The maternal component of E(spl) m9/10 has the most pronounced effect in neurogenesis, while its zygotic component is predominantly required during postembryonic development. The lethality of trans-heterozygotes of null E(spl) deficiency alleles with a strong Delta point mutation is a result of the concomitant reduction in activity of both E(spl) HLH and m9/10 functions. Immunocytochemical localization of the E(spl) m9/10 protein has revealed that it is a ubiquitously distributed nuclear component in embryonic, larval and imaginal tissues.

PubMed ID
PubMed Central ID
PMC1204748 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Publication Year
    Data From Reference
    Aberrations (5)
    Alleles (4)
    Genes (7)
    Transgenic Constructs (1)