Abstract
The results of an investigation into intrinsic differences in the formation of two different heterochromatic domains are presented. The study utilized two different position effect variegation mutants in Drosophila melanogaster for investigating the process of compacting different stretches of DNA into heterochromatin. Each stretch of DNA encodes for a gene that affects different aspects of bristle morphology. The expression of each gene is prevented when it is compacted into heterochromatin thus the genes serve as effective reporter systems to monitor the spread of heterochromatin. Both variegating mutants are scored in the same cell such that environmental and genetic background differences are unambiguously eliminated. Any differences observed in the repression of the two genes must therefore be the result of intrinsic differences in the heterochromatic compaction process for the two stretches of DNA. Studies of the effects different enhancers of variegation have upon the compaction of the two genes indicate each compaction event occurs independently of the other, and that different components are involved in the two processes. These results are discussed with regard to spreading heterochromatin and the role this process may play in regulating gene expression.