FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Bhat, K.M., Schedl, P. (1994). The Drosophila miti-mere gene, a member of the POU family, is required for the specification of the RP2/sibling lineage during neurogenesis.  Development 120(6): 1483--1501.
FlyBase ID
FBrf0072630
Publication Type
Research paper
Abstract
The Drosophila POU gene miti-mere (previously known as pdm2) has a complex spatial and temporal pattern of expression during early development; initially it is expressed in gap-gene-like pattern, then in 14 stripes and finally in a subset of the cells in the developing CNS and PNS. To study the function of this gene during development, we generated a 'synthetic anti-morphic mutation' by expressing a truncated version of the miti protein from a constitutive hsp83 and an inducible hsp70 promoter. We show that these delta miti transgenes behave like classical antimorphic mutations. Using these dominant negative transgenes, together with deletions and a duplication for the gene, we show that miti is required during segmentation and neurogenesis. We have also used temperature-shift experiments with the hsp70 delta miti transgene to demonstrate that miti function in segmentation is distinct and separable from its function during neurogenesis. In segmentation, miti appears to be required in the specification of the segments A2 and A6. In the CNS, miti is required for the elaboration of the NB4-2-->GMC-1-->RP2/sib lineage. miti is initially required in this lineage to establish the identity of the parental ganglion mother cell, GMC-1. miti must then be down-regulated to allow the asymmetric division of GMC-1 into the RP2 and its sibling cell.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Aberrations (4)
    Alleles (2)
    Genes (4)
    Transgenic Constructs (2)