Open Close
Reference
Citation
Kramer, S., West, S.R., Hiromi, Y. (1995). Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway.  Development 121(5): 1361--1372.
FlyBase ID
FBrf0078827
Publication Type
Research paper
Abstract

Drosophila seven-up is an orphan receptor of the steroid receptor family that is required to specify photoreceptor neuron subtypes in the developing compound eye. Expression of seven-up is confined to four of the eight photoreceptor precursors, R3/R4/R1/R6. We show that misexpression of seven-up in any of the other cell types within the developing ommatidium interferes with their differentiation. Each cell type responds differently to seven-up misexpression. For example, ectopic expression in the non-neuronal cone cells using the sevenless promoter/enhancer (sev-svp) causes the cone cells to take on a neuronal identity. Ectopic expression of seven-up in R2/R5 using the rough enhancer (ro-svp) causes these neurons to lose aspects of their photoreceptor subtype identity while remaining neuronal. Each cell type appears to have a different developmental time window that is sensitive to misexpressed seven-up. The temporal order of responsiveness of each cell type to misexpressed seven-up is similar but not identical to the order of neuronal differentiation. This suggests that there are processes of specification that are distinct from the specification to become a photoreceptor neuron. We have identified members of the ras signaling pathway as suppressors of the cone cell to R7 neuron transformation caused by sev-svp. Suppression of the sev-svp phenotype can be achieved by decreasing the gene-dosage of any of the members of the ras-pathway. This suggests that the function of seven-up in the cone cells requires ras signaling. However, a decrease in ras signaling results in enhancement of the phenotype caused by the ro-svp transgene. We discuss the relationship between decisions controlled by seven-up and those controlled by ras signaling.

PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference