FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Payre, F., Buono, P., Vanzo, N., Vincent, A. (1997). Two types of zinc fingers are required for dimerization of the serendipity transcriptional activator.  Mol. Cell. Biol. 17(6): 3137--3145.
FlyBase ID
FBrf0093650
Publication Type
Research paper
Abstract
The serendipity (sry) delta zinc finger protein controls bicoid gene expression during Drosophila melanogaster oogenesis. In addition, sry delta mutants display various zygotic phenotypes, ranging from abnormal embryogenesis to sex-biased adult lethality. We report here that sry delta is a sequence-specific transcriptional activator. A single sry delta consensus binding site (SDCS), in either orientation, is sufficient to promote transcription activation in cell culture, and multiple SDCSs mediate a strong synergistic activation, reflecting the cooperativity of sry delta binding to DNA. Further, several lines of evidence strongly suggest that sry delta binds to DNA as a dimer. While each of three point mutations located in the third zinc finger of sry delta drastically reduces its DNA binding affinity, a fourth mutation, located in the N-terminal region of the protein, specifically affects the cooperativity of DNA binding. This mutation reveals the functional importance of a putative Cys2/Cys2 zinc finger motif of a novel type, located outside the DNA binding domain. A systematic deletion analysis shows that interaction between this proposed Cys2/Cys2 motif and a classical Cys2/His2 zinc finger mediates homodimerization, which is required for DNA binding cooperativity.
PubMed ID
PubMed Central ID
PMC232166 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Genes (2)