Open Close
Reference
Citation
Dong, R., Jacobs, J.R. (1997). Origin and differentiation of supernumerary midline glia in Drosophila embryos deficient for apoptosis.  Dev. Biol. 190(2): 165--177.
FlyBase ID
FBrf0098773
Publication Type
Research paper
Abstract

Drosophila embryos deficient for programmed cell death produce 9 midline glia (MG) in addition to the wild-type complement of 3.2 MG/segment. More than 3 of the supernumerary MG derive from the MGP (MG posterior) lineage and the remainder from the MGA/MGM (MG anterior and middle) lineage. There is one unidentified additional neuron in the mesectoderm of embryos deficient for apoptosis. The supernumerary MG are not diverted from other lineages nor do they arise from an altered pattern of mitosis. Instead, these MG appear to arise from a normally existing pool of 12 precursor cells, larger than anticipated by earlier studies. During normal development, MG survival is dependent upon signaling to the Drosophila EGF receptor. The persistence of supernumerary MG in embryos deficient for apoptosis does not alter the spatial pattern of Drosophila EGF receptor signaling. The number and position of MG which express genes dependent upon EGF receptor function, such as pointed or argos, are indistinguishable from wild type. Genes of the spitz group are required for Drosophila EGF receptor function. Surviving MG in spitz group/H99 double mutants continue to express genes characteristic of the MG, but the cells fail to differentiate into ensheathing glia and are displaced from the nerve cord.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference
    Aberrations (2)
    Alleles (10)
    Genes (6)
    Insertions (5)
    Transgenic Constructs (2)