Open Close
Bohrmann, J., Braun, B. (1999). Na,K-ATPase and V-ATPase in ovarian follicles of Drosophila melanogaster.  Biol. Cell 91(2): 85--98.
FlyBase ID
Publication Type
Research paper

Uncovering the cause and meaning of bioelectric phenomena in developing systems requires investigations of the distribution and activity of ion-transport mechanisms. In order to identify and localize ion pumps in ovarian follicles of Drosophila, we used immunofluorescence microscopy, immunoelectron microscopy, subcellular fractionation, immunoblots, and acridine-orange staining. We applied various antibodies directed against the Na,K-pump (Na,K-ATPase) and against vacuolar-type proton pumps (V-ATPase). During all phases of oogenesis, Na,K-ATPase were found in apical and lateral follicle-cell membranes and, during rapid follicle growth (beginning with stage 10), also in nurse-cell membranes and in the oolemma. V-ATPase were detected in various cytoplasmic vesicles and in yolk spheres and, beginning with stage 10, also in apical follicle-cell membranes and in the oolemma. Given these and earlier results, we propose that: 1) V-ATPase coupled to secondary active antiporters represent the ouabain-intensitive potassium pumps described previously; 2) both Na,K-ATPase and V-ATPase are involved in bioelectric phenomena as well as in osmoregulation and follicle growth, especially during stages 10-12; 3) organelle-associated V-ATPase play a role in vesicle acidification and in yolk processing; and 4) the channel-forming protein ductin is a component of both V-ATPase and gap junctions in ovarian follicles of Drosophila.

PubMed ID
PubMed Central ID
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Biol. Cell
    Biology of the Cell
    Publication Year
    Data From Reference
    Genes (2)