Open Close
Reference
Citation
Lee, C.M., Yu, D.S., Crews, S.T., Kim, S.H. (1999). The CNS midline cells and spitz class genes are required for proper patterning of Drosophila ventral neuroectoderm.  Int. J. Dev. Biol. 43(4): 305--315.
FlyBase ID
FBrf0111408
Publication Type
Research paper
Abstract

The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis.

PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Int. J. Dev. Biol.
    Title
    International Journal of Developmental Biology
    Publication Year
    1989-
    ISBN/ISSN
    0214-6282
    Data From Reference
    Genes (14)