FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Wilson, T.M., Chen, A.D., Hsieh, T. (2000). Cloning and characterization of Drosophila topoisomerase III. Relaxation of hypernegatively supercoiled dna.  J. Biol. Chem. 275(3): 1533--1540.
FlyBase ID
FBrf0123243
Publication Type
Research paper
Abstract
We cloned cDNA encoding Drosophila DNA topoisomerase III. The top3 cDNA encodes an 875-amino acid protein, which is nearly 60% identical to mammalian topoisomerase IIIbeta enzymes. Similarity between the Drosophila protein and the topoisomerase IIIbetas is particularly striking in the carboxyl-terminal region, where all contain eight highly conserved CXXC motifs not found in other topoisomerase III enzymes. We therefore propose the Drosophila protein is a member of the beta-subfamily of topoisomerase III enzymes. The top3beta gene is a single-copy gene located at 5 E-F on the X chromosome. P-element insertion into the 5'-untranslated region of this gene affects topoisomerase IIIbeta protein levels, but not the overall fertility and viability of the fly. We purified topoisomerase IIIbeta to near homogeneity and observed relaxation activity only with a hypernegatively supercoiled substrate, but not with plasmid DNA directly isolated from bacterial cells. Despite this difference in substrate preference, the degree of relaxation of the hypernegatively supercoiled substrate is comparable to relaxation of plasmid DNA by other type I enzymes. Drosophila topoisomerase IIIbeta forms a covalent linkage to 5' DNA phosphoryl groups, and the DNA cleavage reaction prefers single-stranded substrate over double-stranded, suggesting an affinity of this enzyme for DNA with non-double-helical structure.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Alleles (1)
    Genes (4)
    Insertions (1)