FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Iourgenko, V., Levin, L.R. (2000). A calcium-inhibited Drosophila adenylyl cyclase.  Biochim. Biophys. Acta 1495(2): 125--139.
FlyBase ID
FBrf0125164
Publication Type
Research paper
Abstract
Mammals possess a family of transmembrane, G-protein-responsive adenylyl cyclase isoforms (tmACs) encoded by distinct genes differing in their patterns of expression and modes of biochemical regulation. Our previous work confirmed that Drosophila melanogaster also possesses a family of tmAC isoforms defining the fly as a suitable genetic model for discerning mammalian tmAC function. We now describe a Drosophila tmAC, DAC39E, which employs a novel means for regulating its expression; differential exon utilization results in a developmental switch in DAC39E protein. DAC39E protein sequence is most closely related to mammalian type III AC, and it is predominantly expressed in the central nervous system (CNS) and olfactory organs, suggesting a role in processing sensory signaling inputs. DAC39E catalytic activity is inhibited by micromolar concentrations of calcium; therefore, DAC39E is oppositely regulated by calcium compared to the only other tmAC shown to be expressed in the Drosophila CNS, Rutabaga AC. The presence of both positively and negatively regulated tmACs suggests a complex mode of cross-talk between cAMP and calcium signal transduction pathways in the fly CNS.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Biochim. Biophys. Acta
    Title
    Biochimica et Biophysica Acta
    Publication Year
    1947-
    ISBN/ISSN
    0006-3002
    Data From Reference
    Genes (5)