FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Toba, G., Aigaki, T. (2000). Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster.  Gene 253(2): 179--187.
FlyBase ID
FBrf0130115
Publication Type
Research paper
Abstract
Microsomal glutathione S-transferase-I (MGST-I) has been thought to be important for protecting the cell from oxidative damages and/or xenobiotics. We have previously identified the Microsomal glutathione S-transferase-like (Mgstl) gene, a Drosophila homologue of human MGST-I. To investigate the function of the enzyme using Drosophila as a model system, we examined the expression pattern of Mgstl during development, and generated loss-of-function mutants to assess its in-vivo function. Mgstl was expressed in all developmental stages. It is expressed ubiquitously with the highest expression in the larval fat body, an insect organ thought to be functionally corresponding to mammalian liver, while relatively low in the central nervous system. This tissue distribution is consistent with that of MGST-I in humans or Rats. Mgstl null mutants generated from a P element insertion line showed no obvious defects in morphology, indicating that it is not essential for the development. However, their life span was significantly reduced compared to control flies, suggesting that the MGSTL protein is involved in processes somehow contributing to aging. We found an Mgstl pseudogene, which is apparently derived through the reverse transcription of Mgstl mRNA and subsequent integration into the genome.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Gene
    Title
    Gene
    Publication Year
    1976-
    ISBN/ISSN
    0378-1119
    Data From Reference
    Aberrations (2)
    Alleles (5)
    Gene Groups (1)
    Genes (2)
    Insertions (1)