Open Close
Reference
Citation
Littleton, J.T., Bai, J., Vyas, B., Desai, R., Baltus, A.E., Garment, M.B., Carlson, S.D., Ganetzky, B., Chapman, E.R. (2001). Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo.  J. Neurosci. 21(5): 1421--1433.
FlyBase ID
FBrf0134720
Publication Type
Research paper
Abstract

Synaptotagmin has been proposed to function as a Ca(2+) sensor that regulates synaptic vesicle exocytosis, whereas the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is thought to form the core of a conserved membrane fusion machine. Little is known concerning the functional relationships between synaptotagmin and SNAREs. Here we report that synaptotagmin can facilitate SNARE complex formation in vitro and that synaptotagmin mutations disrupt SNARE complex formation in vivo. Synaptotagmin oligomers efficiently bind SNARE complexes, whereas Ca(2+) acting via synaptotagmin triggers cross-linking of SNARE complexes into dimers. Mutations in Drosophila that delete the C2B domain of synaptotagmin disrupt clathrin AP-2 binding and endocytosis. In contrast, a mutation that blocks Ca(2+)-triggered conformational changes in C2B and diminishes Ca(2+)-triggered synaptotagmin oligomerization results in a postdocking defect in neurotransmitter release and a decrease in SNARE assembly in vivo. These data suggest that Ca(2+)-driven oligomerization via the C2B domain of synaptotagmin may trigger synaptic vesicle fusion via the assembly and clustering of SNARE complexes.

PubMed ID
PubMed Central ID
PMC6762938 (PMC) (EuropePMC)
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Alleles (5)
    Genes (5)
    Physical Interactions (4)