Open Close
Reference
Citation
Koh, Y.H., Ruiz-Canada, C., Gorczyca, M., Budnik, V. (2002). The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion.  J. Neurosci. 22(7): 2496--2504.
FlyBase ID
FBrf0151505
Publication Type
Research paper
Abstract

Ras proteins are small GTPases with well known functions in cell proliferation and differentiation. In these processes, they play key roles as molecular switches that can trigger distinct signal transduction pathways, such as the mitogen-activated protein kinase (MAPK) pathway, the phosphoinositide-3 kinase pathway, and the Ral-guanine nucleotide dissociation stimulator pathway. Several studies have implicated Ras proteins in the development and function of synapses, but the molecular mechanisms for this regulation are poorly understood. Here, we demonstrate that the Ras-MAPK pathway is involved in synaptic plasticity at the Drosophila larval neuromuscular junction. Both Ras1 and MAPK are expressed at the neuromuscular junction, and modification of their activity levels results in an altered number of synaptic boutons. Gain- or loss-of-function mutations in Ras1 and MAPK reveal that regulation of synapse structure by this signal transduction pathway is dependent on fasciclin II localization at synaptic boutons. These results provide evidence for a Ras-dependent signaling cascade that regulates fasciclin II-mediated cell adhesion at synaptic terminals during synapse growth.

PubMed ID
PubMed Central ID
PMC6758305 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference