Open Close
Reference
Citation
Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., Leopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth.  Cell 114(6): 739--749.
FlyBase ID
FBrf0161991
Publication Type
Research paper
Abstract

Organisms modulate their growth according to nutrient availability. Although individual cells in a multicellular animal may respond directly to nutrient levels, growth of the entire organism needs to be coordinated. Here, we provide evidence that in Drosophila, coordination of organismal growth originates from the fat body, an insect organ that retains endocrine and storage functions of the vertebrate liver. In a genetic screen for growth modifiers, we identified slimfast, a gene that encodes an amino acid transporter. Remarkably, downregulation of slimfast specifically within the fat body causes a global growth defect similar to that seen in Drosophila raised under poor nutritional conditions. This involves TSC/TOR signaling in the fat body, and a remote inhibition of organismal growth via local repression of PI3-kinase signaling in peripheral tissues. Our results demonstrate that the fat body functions as a nutrient sensor that restricts global growth through a humoral mechanism.

PubMed ID
PubMed Central ID
Related Publication(s)
Note

Amino acids and the humoral regulation of growth. Fat bodies use slimfast.
Bradley and Leevers, 2003, Cell 114(6): 656--658 [FBrf0161990]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cell
    Title
    Cell
    Publication Year
    1974-
    ISBN/ISSN
    0092-8674
    Data From Reference