FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Ma, Q., Guo, C., Barnewitz, K., Sheldrick, G.M., Soling, H.D., Uson, I., Ferrari, D.M. (2003). Crystal structure and functional analysis of Drosophila wind, a protein-disulfide isomerase-related protein.  J. Biol. Chem. 278(45): 44600--44607.
FlyBase ID
FBrf0167746
Publication Type
Research paper
Abstract
In the developing Drosophila melanogaster embryo, dorsal-ventral patterning displays an absolute requirement for the product of the essential windbeutel gene, Wind. In homozygous windbeutel mutant flies, dorsal-ventral patterning fails to initiate because of the failure of the Golgi-resident proteoglycan-modifying protein, Pipe, to exit the endoplasmic reticulum, and this leads to the death of the embryo. Here, we describe the three-dimensional structure of Wind at 1.9-A resolution and identify a candidate surface for interaction with Pipe. This represents the first crystal structure of a eukaryotic protein-disulfide isomerase-related protein of the endoplasmic reticulum to be described. The dimeric protein is composed of an N-terminal thioredoxin domain and a C-terminal alpha-helical domain unique to protein-disulfide isomerase D proteins. Although Wind carries a CXXC motif that is partially surface accessible, this motif is redox inactive, and the cysteines are not required for the targeting of Pipe to the Golgi. However, both domains are required for targeting Pipe to the Golgi, and, although the mouse homologue ERp28 cannot replace the function of Wind, exchange of the Wind D-domain with that of ERp28 allows for efficient Golgi transport of Pipe.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Genes (2)
    Physical Interactions (2)