Open Close
Reference
Citation
Missirlis, F., Hu, J., Kirby, K., Hilliker, A.J., Rouault, T.A., Phillips, J.P. (2003). Compartment-specific protection of iron-sulfur proteins by superoxide dismutase.  J. Biol. Chem. 278(48): 47365--47369.
FlyBase ID
FBrf0167750
Publication Type
Research paper
Abstract

Iron and oxygen are essential but potentially toxic constituents of most organisms, and their transport is meticulously regulated both at the cellular and systemic levels. Compartmentalization may be a homeostatic mechanism for isolating these biological reactants in cells. To investigate this hypothesis, we have undertaken a genetic analysis of the interaction between iron and oxygen metabolism in Drosophila. We show that Drosophila iron regulatory protein-1 (IRP1) registers cytosolic iron and oxidative stress through its labile iron sulfur cluster by switching between cytosolic aconitase and RNA-binding functions. IRP1 is strongly activated by silencing and genetic mutation of the cytosolic superoxide dismutase (Sod1), but is unaffected by silencing of mitochondrial Sod2. Conversely, mitochondrial aconitase activity is relatively insensitive to loss of Sod1 function, but drops dramatically if Sod2 activity is impaired. This strongly suggests that the mitochondrial boundary limits the range of superoxide reactivity in vivo. We also find that exposure of adults to paraquat converts cytosolic aconitase to IRP1 but has no affect on mitochondrial aconitase, indicating that paraquat generates superoxide in the cytosol but not in mitochondria. Accordingly, we find that transgene-mediated overexpression of Sod2 neither enhances paraquat resistance in Sod1+ flies nor compensates for lack of SOD1 activity in Sod1-null mutants. We conclude that in vivo, superoxide is confined to the subcellular compartment in which it is formed, and that the mitochondrial and cytosolic SODs provide independent protection to compartment-specific protein iron-sulfur clusters against attack by superoxide generated under oxidative stress within those compartments.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference