Open Close
Reference
Citation
Sen, A., Kuruvilla, D., Pinto, L., Sarin, A., Rodrigues, V. (2004). Programmed cell death and context dependent activation of the EGF pathway regulate gliogenesis in the Drosophila olfactory system.  Mech. Dev. 121(1): 65--78.
FlyBase ID
FBrf0167846
Publication Type
Research paper
Abstract

In the Drosophila antenna, sensory lineages selected by the basic helix-loop-helix transcription factor Atonal are gliogenic while those specified by the related protein Amos are not. What are the mechanisms that cause the two lineages to act differentially? We found that ectopic expression of the Baculovirus inhibitor of apoptosis protein (p35) rescues glial cells from the Amos-derived lineages, suggesting that precursors are removed by programmed cell death. In the wildtype, glial precursors express the extracellular-signal regulated kinase transiently, and antagonism of Epidermal Growth Factor (EGF) pathway signaling compromises their development. We suggest that all sensory lineages on the antenna are competent to produce glia but only those specified by Atonal respond to EGF signaling and survive. These results underscore the importance of developmental context of cell lineages in their responses to non-autonomous signaling in the choice between survival and death.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mech. Dev.
    Title
    Mechanisms of Development
    Publication Year
    1990-
    ISBN/ISSN
    0925-4773
    Data From Reference