Open Close
Reference
Citation
Rogers, G.C., Rogers, S.L., Schwimmer, T.A., Ems-McClung, S.C., Walczak, C.E., Vale, R.D., Scholey, J.M., Sharp, D.J. (2004). Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase.  Nature 427(6972): 364--370.
FlyBase ID
FBrf0167933
Publication Type
Research paper
Abstract

During anaphase identical sister chromatids separate and move towards opposite poles of the mitotic spindle. In the spindle, kinetochore microtubules have their plus ends embedded in the kinetochore and their minus ends at the spindle pole. Two models have been proposed to account for the movement of chromatids during anaphase. In the 'Pac-Man' model, kinetochores induce the depolymerization of kinetochore microtubules at their plus ends, which allows chromatids to move towards the pole by 'chewing up' microtubule tracks. In the 'poleward flux' model, kinetochores anchor kinetochore microtubules and chromatids are pulled towards the poles through the depolymerization of kinetochore microtubules at the minus ends. Here, we show that two functionally distinct microtubule-destabilizing KinI kinesin enzymes (so named because they possess a kinesin-like ATPase domain positioned internally within the polypeptide) are responsible for normal chromatid-to-pole motion in Drosophila. One of them, KLP59C, is required to depolymerize kinetochore microtubules at their kinetochore-associated plus ends, thereby contributing to chromatid motility through a Pac-Man-based mechanism. The other, KLP10A, is required to depolymerize microtubules at their pole-associated minus ends, thereby moving chromatids by means of poleward flux.

PubMed ID
PubMed Central ID
Related Publication(s)
Note

Cell division: burning the spindle at both ends.
Heald, 2004, Nature 427(6972): 300--301 [FBrf0173094]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Genes (3)