Open Close
Reference
Citation
Swantek, D., Gergen, J.P. (2004). Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription.  Development 131(10): 2281--2290.
FlyBase ID
FBrf0174579
Publication Type
Research paper
Abstract

A crucial step in generating the segmented body plan in Drosophila is establishing stripes of expression of several key segment-polarity genes, one stripe for each parasegment, in the blastoderm stage embryo. It is well established that these patterns are generated in response to regulation by the transcription factors encoded by the pair-rule segmentation genes. However, the full set of positional cues that drive expression in either the odd- or even-numbered parasegments has not been defined for any of the segment-polarity genes. Among the complications for dissecting the pair-rule to segment-polarity transition are the regulatory interactions between the different pair-rule genes. We have used an ectopic expression system that allows for quantitative manipulation of expression levels to probe the role of the primary pair-rule transcription factor Runt in segment-polarity gene regulation. These experiments identify sloppy paired 1 (slp1) as a gene that is activated and repressed by Runt in a simple combinatorial parasegment-dependent manner. The combination of Runt and Odd-paired (Opa) is both necessary and sufficient for slp1 activation in all somatic blastoderm nuclei that do not express the Fushi tarazu (Ftz) transcription factor. By contrast, the specific combination of Runt + Ftz is sufficient for slp1 repression in all blastoderm nuclei. We furthermore find that Ftz modulates the Runt-dependent regulation of the segment-polarity genes wingless (wg) and engrailed (en). However, in the case of en the combination of Runt + Ftz gives activation. The contrasting responses of different downstream targets to Runt in the presence or absence of Ftz is thus central to the combinatorial logic of the pair-rule to segment-polarity transition. The unique and simple rules for slp1 regulation make this an attractive target for dissecting the molecular mechanisms of Runt-dependent regulation.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Alleles (7)
    Genes (11)
    Insertions (12)
    Experimental Tools (1)
    Transgenic Constructs (4)