FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Eraly, S.A., Monte, J.C., Nigam, S.K. (2004). Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters.  Physiol. Genomics 18(1): 12--24.
FlyBase ID
FBrf0179202
Publication Type
Research paper
Abstract
Slc22 family organic anion and cation transporters (OATs, OCTs, and OCTNs) are transmembrane proteins expressed predominantly in kidney and liver. These proteins mediate the uptake or excretion of numerous physiologically (and pharmacologically) important compounds, and accordingly have been the focus of intensive study. Here we investigate the molecular phylogeny of the slc22 transporters, identifying homologs in Drosophila and C. elegans, several of which are developmentally regulated, as well as reporting the cloning of a novel human family member, UST6, expressed exclusively in liver in both embryo and adult. The latter helps define a subfamily within the OATs, which appears to have human- and rodent-specific members, raising potential issues with respect to the use of rodents as models for the transport of organic anions (which include many pharmaceuticals) in humans. Although this phylogenetic inference could not be made on the basis of sequence alignment, analysis of intron phasing suggests that the OAT, OCT, and OCTN lineages of the slc22 family formed after the divergence of vertebrates and invertebrates. Subsequently, these lineages expanded through independent tandem duplications to produce multiple gene pairs. After analyzing over 200 other transporter genes, we find such pairing to be relatively specific to vertebrate organic anion and cation transporters, suggesting selection for gene pairing operating within this family in particular. This might reflect a requirement for redundancy or broader substrate specificity in vertebrates (compared to invertebrates), due to their greater physiological complexity and thus potentially broader exposure to organic ions.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Physiol. Genomics
    Title
    Physiological Genomics
    Publication Year
    1999-
    ISBN/ISSN
    1094-8341
    Data From Reference
    Gene Groups (1)
    Genes (9)