FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Yang, M., Nelson, D., Funakoshi, Y., Padgett, R.W. (2004). Genome-wide microarray analysis of TGFbeta signaling in the Drosophila brain.  BMC Dev. Biol. 4(1): 14.
FlyBase ID
FBrf0179959
Publication Type
Research paper
Abstract
Members of TGFbeta superfamily are found to play important roles in many cellular processes, such as proliferation, differentiation, development, apoptosis, and cancer. In Drosophila, there are seven ligands that function through combinations of three type I receptors and two type II receptors. These signals can be roughly grouped into two major TGFbeta pathways, the dpp/BMP and activin pathways, which signal primarily through thick veins (tkv) and baboon (babo). Few downstream targets are known for either pathway, especially targets expressed in the Drosophila brain.tkv and babo both affect the growth of tissues, but have varying effects on patterning. We have identified targets for the tkv and babo pathways by employing microarray techniques using activated forms of the receptors expressed in the brain. In these experiments, we compare the similarities of target genes of these two pathways in the brain. About 500 of 13,500 examined genes changed expression at 95% confidence level (P < 0.05). Twenty-seven genes are co-regulated 1.5 fold by both the tkv and babo pathways. These regulated genes cluster into various functional groups such as DNA/RNA binding, signal transducers, enzymes, transcription regulators, and neuronal regulators. RNAi knockdown experiments of homologs of several of these genes show abnormal growth regulation, suggesting these genes may execute the growth properties of TGFbeta.Our genomic-wide microarray analysis has revealed common targets for the tkv and babo pathways and provided new insights into downstream effectors of two distinct TGFbeta like pathways. Many of these genes are novel and several genes are implicated in growth control. Among the genes regulated by both pathways is ultraspiracle, which further connects TGFbeta with neuronal remodeling.
PubMed ID
PubMed Central ID
PMC526378 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    BMC Dev. Biol.
    Title
    BMC Developmental Biology
    Publication Year
    2002
    ISBN/ISSN
    1471-213X
    Data From Reference