FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Mathe, E., Kraft, C., Giet, R., Deak, P., Peters, J.M., Glover, D.M. (2004). The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation.  Curr. Biol. 14(19): 1723--1733.
FlyBase ID
FBrf0180066
Publication Type
Research paper
Abstract
Proteolytic degradation of mitotic regulatory proteins first requires these targets to be ubiquitinated. This is regulated at the level of conjugation of ubiquitin to substrates by the anaphase-promoting complex/cyclosome (APC/C) ubiquitin-protein ligase. Substrate specificity and temporal activity of the APC/C has been thought to lie primarily with its two activators, Cdc20/Fizzy and Cdh1/Fizzy-related.Here, we show that reduction in the E2 ubiquitin-conjugating enzyme (UBC) of the E2-C family that is encoded by the Drosophila gene vihar (vih), by either mutation or RNAi, leads to an accumulation of cells in a metaphase-like state. Cyclin B accumulates to high levels in all mitotic vih cells, particularly at the spindle poles. Vihar E2-C is present in the cytoplasm of mitotic cells but also associates with centrosomes, and its own degradation is initiated at the metaphase-anaphase transition. Expression of destruction D box mutants of vihar in the syncytial embryo results in mitotic arrest at late anaphase. In contrast to hypomorphic mutants, Cyclin B is degraded at the spindle poles and accumulates in the equatorial region of the spindle.In Drosophila, the Vihar E2 UBC contributes to the spatiotemporal control of Cyclin B degradation that first occurs at the spindle poles. APC/C-mediated proteolysis of Vihar E2-C autoinactivates the APC/C at the centrosome before a second wave of proteolysis to degrade Cyclin B on the rest of the spindle and elsewhere in the cell.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Aberrations (4)
    Alleles (9)
    Genes (8)
    Insertions (1)
    Experimental Tools (2)
    Transgenic Constructs (6)