Open Close
Reference
Citation
Wang, W., Struhl, G. (2005). Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila.  Development 132(12): 2883--2894.
FlyBase ID
FBrf0187489
Publication Type
Research paper
Abstract
Ligands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono-ubiquitinated membrane proteins for internalization. Here, we present evidence that the Drosophila ortholog of Mib (Dmib) is required for ubiquitination and signaling activity of DSL ligands in cells that normally do not express Neur, and can be functionally replaced by ectopically expressed Neur. Furthermore, we show that both Dmib and Epsin are required in these cells for some of the endocytic events that internalize DSL ligands, and that the two Drosophila DSL ligands Delta and Serrate differ in their utilization of these Dmib- and Epsin-dependent pathways: most Serrate is endocytosed via the actions of Dmib and Epsin, whereas most Delta enters by other pathways. Nevertheless, only those Serrate and Delta proteins that are internalized via the action of Dmib and Epsin can signal. These results support and extend our previous proposal that mono-ubiquitination of DSL ligands allows them to gain access to a select, Epsin-dependent, endocytic pathway that they must normally enter to activate Notch.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference