FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Yuan, Q., Lin, F., Zheng, X., Sehgal, A. (2005). Serotonin modulates circadian entrainment in Drosophila.  Neuron 47(1): 115--127.
FlyBase ID
FBrf0188183
Publication Type
Research paper
Abstract
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to light. Effects of d5-HT1B are synergistic with a mutation in the circadian photoreceptor cryptochrome (CRY) and are mediated by SHAGGY (SGG), Drosophila glycogen synthase kinase 3beta (GSK3beta), which phosphorylates TIM. Levels of serotonin are decreased in flies maintained in extended constant darkness, suggesting that modulation of the clock by serotonin may vary under different environmental conditions. These data identify a molecular connection between serotonin signaling and the central clock component TIM and suggest a homeostatic mechanism for the regulation of circadian photosensitivity in Drosophila.
PubMed ID
PubMed Central ID
Related Publication(s)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neuron
    Title
    Neuron
    Publication Year
    1988-
    ISBN/ISSN
    0896-6273
    Data From Reference
    Alleles (15)
    Genes (9)
    Sequence Features (1)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (1)
    Transgenic Constructs (12)