Open Close
Reference
Citation
Yano, H., Yamamoto-Hino, M., Abe, M., Kuwahara, R., Haraguchi, S., Kusaka, I., Awano, W., Kinoshita-Toyoda, A., Toyoda, H., Goto, S. (2005). Distinct functional units of the Golgi complex in Drosophila cells.  Proc. Natl. Acad. Sci. U.S.A. 102(38): 13467--13472.
FlyBase ID
FBrf0188285
Publication Type
Research paper
Abstract
A striking variety of glycosylation occur in the Golgi complex in a protein-specific manner, but how this diversity and specificity are achieved remains unclear. Here we show that stacked fragments (units) of the Golgi complex dispersed in Drosophila imaginal disk cells are functionally diverse. The UDP-sugar transporter FRINGE-CONNECTION (FRC) is localized to a subset of the Golgi units distinct from those harboring SULFATELESS (SFL), which modifies glucosaminoglycans (GAGs), and from those harboring the protease RHOMBOID (RHO), which processes the glycoprotein SPITZ (SPI). Whereas the glycosylation and function of NOTCH are affected in imaginal disks of frc mutants, those of SPI and of GAG core proteins are not, even though FRC transports a broad range of glycosylation substrates, suggesting that Golgi units containing FRC and those containing SFL or RHO are functionally separable. Distinct Golgi units containing FRC and RHO in embryos could also be separated biochemically by immunoisolation techniques. We also show that Tn-antigen glycan is localized only in a subset of the Golgi units distributed basally in a polarized cell. We propose that the different localizations among distinct Golgi units of molecules involved in glycosylation underlie the diversity of glycan modification.
PubMed ID
PubMed Central ID
PMC1224666 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Proc. Natl. Acad. Sci. U.S.A.
    Title
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    1915-
    ISBN/ISSN
    0027-8424
    Data From Reference
    Alleles (11)
    Genes (21)
    Natural transposons (1)
    Experimental Tools (2)
    Transgenic Constructs (7)