FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Baker, K.D., Beckstead, R.B., Mangelsdorf, D.J., Thummel, C.S. (2007). Functional interactions between the Moses corepressor and DHR78 nuclear receptor regulate growth in Drosophila.  Genes Dev. 21(4): 450--464.
FlyBase ID
FBrf0193212
Publication Type
Research paper
Abstract
Expression of the Drosophila orphan nuclear receptor DHR78 is regulated by the steroid hormone ecdysone and is required for growth and viability during larval stages. In contrast to our understanding of its biological functions, however, relatively little is known about how DHR78 acts as a transcription factor. Here we show that DHR78 is an obligate partner for Moses (Middleman of seventy-eight signaling), a SAM (sterile alpha motif) domain-containing cofactor that requires DHR78 for its stability. Unlike other nuclear receptor cofactors, Moses has no obvious interaction domains and displays a unique binding specificity for DHR78. Moses acts as a corepressor, inhibiting DHR78 transcriptional activity independently of histone deacetylation. Consistent with their close association, DHR78 and Moses proteins are coexpressed during development and colocalize to specific genomic targets in chromatin. Moses mutants progress normally through early larval stages, like DHR78 mutants, but display an opposite overgrowth phenotype, with hypertrophy of adult tissues. Genetic interactions between DHR78 and moses result in a similar phenotype, suggesting that the relative dose of Moses and DHR78 regulates growth and prevents cancer. The tight functional association between DHR78 and Moses provides a new paradigm for understanding the molecular mechanisms by which cofactors modulate nuclear receptor signaling pathways.
PubMed ID
PubMed Central ID
PMC1804333 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genes Dev.
    Title
    Genes & Development
    Publication Year
    1987-
    ISBN/ISSN
    0890-9369
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Genes (8)
    Physical Interactions (4)
    Natural transposons (1)
    Insertions (2)
    Transgenic Constructs (4)