FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Tao, L., Mogilner, A., Civelekoglu-Scholey, G., Wollman, R., Evans, J., Stahlberg, H., Scholey, J.M. (2006). A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays.  Curr. Biol. 16(23): 2293--2302.
FlyBase ID
FBrf0194476
Publication Type
Research paper
Abstract
Mitosis depends upon the cooperative action of multiple microtubule (MT)-based motors. Among these, a kinesin-5, KLP61F, and the kinesin-14, Ncd, are proposed to generate antagonistic-sliding forces that control the spacing of the spindle poles. We tested whether purified KLP61F homotetramers and Ncd homodimers can generate a force balance capable of maintaining a constant spindle length in Drosophila embryos.Using fluorescence microscopy and cryo-EM, we observed that purified full-length, motorless, and tailless KLP61F tetramers (containing a tetramerization domain) and Ncd dimers can all cross-link MTs into bundles in MgATP. In multiple-motor motility assays, KLP61F and Ncd drive plus-end and minus-end MT sliding at 0.04 and 0.1 microm/s, respectively, but the motility of either motor is decreased by increasing the mole fraction of the other. At the "balance point," the mean velocity was zero and MTs paused briefly and then oscillated, taking approximately 0.3 microm excursions at approximately 0.02 microm/s toward the MT plus end and then the minus end.The results, combined with quantitative analysis, suggest that these motors could act as mutual brakes to modulate the rate of pole-pole separation and could maintain a prometaphase spindle displaying small fluctuations in its steady-state length.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Genes (2)
    Physical Interactions (4)