FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Kirkpatrick, C.A., Knox, S.M., Staatz, W.D., Fox, B., Lercher, D.M., Selleck, S.B. (2006). The function of a Drosophila glypican does not depend entirely on heparan sulfate modification.  Dev. Biol. 300(2): 570--582.
FlyBase ID
FBrf0194660
Publication Type
Research paper
Abstract
Division abnormally delayed (Dally) is one of two glycosylphosphatidylinositol (GPI)-linked heparan sulfate proteoglycans in Drosophila. Numerous studies have shown that it influences Decapentaplegic (Dpp) and Wingless signaling. It has been generally assumed that Dally affects signaling by directly interacting with these growth factors, primarily through its heparan sulfate (HS) chains. To understand the functional contributions of HS chains and protein core we have (1) assessed the growth factor binding properties of purified Dally using surface plasmon resonance, (2) generated a form of Dally that is not HS modified and evaluated its signaling capacity in vivo. Purified Dally binds directly to FGF2, FGF10, and the functional Dpp homolog BMP4. FGF binding is abolished by preincubation with HS, but BMP4 association is partially HS-resistant, suggesting the Dally protein core contributes to binding. Cell binding and co-immunoprecipitation studies suggest that non-HS-modified Dally retains some ability to bind Dpp or BMP4. Expression of HS-deficient Dally in vivo showed it does not promote signaling as well as wild-type Dally, yet it can rescue several dally mutant phenotypes. These data reveal that heparan sulfate modification of Dally is not required for all in vivo activities and that significant functional capacity resides in the protein core.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference
    Aberrations (1)
    Alleles (12)
    Genes (5)
    Physical Interactions (1)
    Cell Lines (1)
    Natural transposons (1)
    Insertions (3)
    Experimental Tools (2)
    Transgenic Constructs (4)