Open Close
Reference
Citation
Rajendra, T.K., Gonsalvez, G.B., Walker, M.P., Shpargel, K.B., Salz, H.K., Matera, A.G. (2007). A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle.  J. Cell Biol. 176(6): 831--841.
FlyBase ID
FBrf0194681
Publication Type
Research paper
Abstract

Mutations in human survival motor neurons 1 (SMN1) cause spinal muscular atrophy (SMA) and are associated with defects in assembly of small nuclear ribonucleoproteins (snRNPs) in vitro. However, the etiological link between snRNPs and SMA is unclear. We have developed a Drosophila melanogaster system to model SMA in vivo. Larval-lethal Smn-null mutations show no detectable snRNP reduction, making it unlikely that these animals die from global snRNP deprivation. Hypomorphic mutations in Smn reduce dSMN protein levels in the adult thorax, causing flightlessness and acute muscular atrophy. Mutant flight muscle motoneurons display pronounced axon routing and arborization defects. Moreover, Smn mutant myofibers fail to form thin filaments and phenocopy null mutations in Act88F, which is the flight muscle-specific actin isoform. In wild-type muscles, dSMN colocalizes with sarcomeric actin and forms a complex with alpha-actinin, the thin filament crosslinker. The sarcomeric localization of Smn is conserved in mouse myofibrils. These observations suggest a muscle-specific function for SMN and underline the importance of this tissue in modulating SMA severity.

PubMed ID
PubMed Central ID
PMC2064057 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference