FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Cheng, Z., Arscott, L.D., Ballou, D.P., Williams, C.H. (2007). The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.  Biochemistry 46(26): 7875--7885.
FlyBase ID
FBrf0200537
Publication Type
Research paper
Abstract
Thioredoxin reductase from Drosophila melanogaster (DmTrxR) catalyzes the reversible transfer of reducing equivalents between NADPH and thioredoxin (Trx), a small protein that is involved in a wide variety of biological redox processes. The catalysis involves three essential redox states of the enzyme: the oxidized form of DmTrxR (Eox), the 2-electron-reduced forms (EH2), and the 4-electron-reduced forms (EH4). In the present work, the macroscopic redox potentials of Eox/EH2 and EH2/EH4 couples were determined to be -272 +/- 5 mV for Em(Eox/EH2) and -298 +/- 11 mV for Em(EH2/EH4) on the basis of redox equilibria between DmTrxR and NADH. The value for Em(EH2/EH4) obtained from the steady-state kinetics of the TrxR-catalyzed reaction between NADPH and D. melanogaster Trx-2 (DmTrx-2) was reasonably consistent with that based on redox equilibria. The redox potential of the Trx-(S)2/Trx-(SH)2 couple from D. melanogaster Trx-2 (DmTrx-2) was calculated to be -275.4 +/- 0.3 mV by using the Nernst equation and the Keq for the equilibrium of the reaction involving NADP/NADPH and Trx-(S)2/Trx-(SH)2. For the accurate determination of the Keq, an improved protocol has been developed to minimize errors that can be introduced by using starting concentrations far from equilibrium of the TrxR-catalyzed reaction between NADPH and Trx. This improved approach gives an Em of -284.2 +/- 1.0 mV for Escherichia coli Trx and -271.9 +/- 0.4 mV for Plasmodium falciparum Trx, which agree well with published values (-283 or -285 mV and -270 mV, respectively). The redox potentials determined herein provide further direct evidence for the proposed catalytic mechanism of DmTrxR, and cast new light on the essential role of the DmTrx system in cycling GSSG/GSH and maintaining the intracellular redox homeostasis in D. melanogaster where glutathione reductase is absent.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Biochemistry
    Title
    Biochemistry
    Publication Year
    1962-
    ISBN/ISSN
    0006-2960
    Data From Reference
    Genes (2)