Open Close
Reference
Citation
Ferjoux, G., Auge, B., Boyer, K., Haenlin, M., Waltzer, L. (2007). A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells.  Dev. Biol. 305(2): 726--734.
FlyBase ID
FBrf0200672
Publication Type
Research paper
Abstract
Members of the RUNX and GATA transcription factor families play critical roles during hematopoiesis from Drosophila to mammals. In Drosophila, the formation of the crystal cell hematopoietic lineage depends on the continuous expression of the lineage-specific RUNX factor Lozenge (Lz) and on its interaction with the GATA factor Serpent (Srp). Crystal cells are the main source of prophenoloxidases (proPOs), the enzymes required for melanization. By analyzing the promoter regions of several insect proPOs, we identify a conserved GATA/RUNX cis-regulatory module that ensures the crystal cell-specific expression of the three Drosophila melanogaster proPO. We demonstrate that activation of this module requires the direct binding of both Srp and Lz. Interestingly, a similar GATA/RUNX signature is over-represented in crystal cell differentiation markers, allowing us to identify new Srp/Lz target genes by genome-wide screening of Drosophila promoter regions. Finally, we show that the expression of lz in the crystal cells also relies on Srp/Lz-mediated activation via a similar module, indicating that crystal cell fate choice maintenance and activation of the differentiation program are coupled. Based on our observations, we propose that this GATA/RUNX cis-regulatory module may be reiteratively used during hematopoietic development through evolution.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference