Open Close
Reference
Citation
Larschan, E., Alekseyenko, A.A., Gortchakov, A.A., Peng, S., Li, B., Yang, P., Workman, J.L., Park, P.J., Kuroda, M.I. (2007). MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism.  Mol. Cell 28(1): 121--133.
FlyBase ID
FBrf0200743
Publication Type
Research paper
Abstract

In Drosophila, X chromosome dosage compensation requires the male-specific lethal (MSL) complex, which associates with actively transcribed genes on the single male X chromosome to upregulate transcription approximately 2-fold. We found that on the male X chromosome, or when MSL complex is ectopically localized to an autosome, histone H3K36 trimethylation (H3K36me3) is a strong predictor of MSL binding. We isolated mutants lacking Set2, the H3K36me3 methyltransferase, and found that Set2 is an essential gene in both sexes of Drosophila. In set2 mutant males, MSL complex maintains X specificity but exhibits reduced binding to target genes. Furthermore, recombinant MSL3 protein preferentially binds nucleosomes marked by H3K36me3 in vitro. Our results support a model in which MSL complex uses high-affinity sites to initially recognize the X chromosome and then associates with many of its targets through sequence-independent features of transcribed genes.

PubMed ID
PubMed Central ID
Related Publication(s)
Supplementary material
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell
    Title
    Molecular Cell
    Publication Year
    1997-
    ISBN/ISSN
    1097-2765 1097-4164
    Data From Reference
    Aberrations (1)
    Alleles (7)
    Genes (21)
    Cell Lines (1)
    Transgenic Constructs (4)