Open Close
Reference
Citation
Chan, C.C., Zhang, S., Cagatay, T., Wharton, K.A. (2007). Cell-autonomous, myristyl-independent activity of the Drosophila Wnt/Wingless antagonist Naked cuticle (Nkd).  Dev. Biol. 311(2): 538--553.
FlyBase ID
FBrf0201330
Publication Type
Research paper
Abstract

Robust animal development, tissue homeostasis, and stem cell renewal requires precise control of the Wnt/beta-catenin signaling axis. In the embryo of the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene attenuates signaling by the Wnt ligand Wingless (Wg) during segmentation. nkd mutants have been reported to exhibit abnormalities in wg transcription, Wg protein distribution and/or transport, and the intracellular response to Wg, but the relationship between each alteration and the molecular mechanism of Nkd action remains unclear. In addition, whether Nkd acts in a cell-autonomous or nonautonomous fashion in the embryo is not known. Mammalian Nkd homologs have N-terminal consensus sequences that direct the post-translational addition of a lipophilic myristoyl moiety, but fly and mosquito Nkd, while sharing N-terminal sequence homology, lack a myristoylation consensus sequence. Here we provide evidence that fly Nkd acts cell-autonomously in the embryo, with its N-terminus able to confer unique functional properties and membrane association that cannot be mimicked in vivo by heterologous myristoylation consensus sequences. In conjunction with our recent observation that Nkd requires nuclear localization for function, our data suggest that Nkd acts at more than one subcellular location within signal-receiving cells to attenuate Wg signaling.

PubMed ID
PubMed Central ID
PMC2117332 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference