Open Close
Reference
Citation
Wei, D.S., Rong, Y.S. (2007). A genetic screen for DNA double-strand break repair mutations in Drosophila.  Genetics 177(1): 63--77.
FlyBase ID
FBrf0201349
Publication Type
Research paper
Abstract

The study of DNA double-strand break (DSB) repair has been greatly facilitated by the use of rare-cutting endonucleases, which induce a break precisely at their cut sites that can be strategically placed in the genome. We previously established such a system in Drosophila and showed that the yeast I-SceI enzyme cuts efficiently in Drosophila cells and those breaks are effectively repaired by conserved mechanisms. In this study, we determined the genetic requirements for the repair of this I-SceI-induced DSB in the germline. We show that Drosophila Rad51 and Rad54 are both required for homologous repair by gene conversion, but are dispensable for single-strand annealing repair. We provided evidence suggesting that Rad51 is more stringently required than Rad54 for intersister gene conversion. We uncovered a significant role of DNA ligase IV in nonhomologous end joining. We conducted a screen for candidate mutations affecting DSB repair and discovered novel mutations in genes that include mutagen sensitive 206, single-strand annealing reducer, and others. In addition, we demonstrated an intricate balance among different repair pathways in which the cell differentially utilizes repair mechanisms in response to both changes in the genomic environment surrounding the break and deficiencies in one or the other repair pathways.

PubMed ID
PubMed Central ID
PMC2013711 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genetics
    Title
    Genetics
    Publication Year
    1916-
    ISBN/ISSN
    0016-6731
    Data From Reference