FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Shah, P.K., Tripathi, L.P., Jensen, L.J., Gahnim, M., Mason, C., Furlong, E.E., Rodrigues, V., White, K.P., Bork, P., Sowdhamini, R. (2008). Enhanced function annotations for Drosophila serine proteases: A case study for systematic annotation of multi-member gene families.  Gene 407(1-2): 199--215.
FlyBase ID
FBrf0202030
Publication Type
Research paper
Abstract
Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Gene
    Title
    Gene
    Publication Year
    1976-
    ISBN/ISSN
    0378-1119
    Data From Reference
    Gene Groups (1)
    Genes (204)
    List limited to the first 200 records. Use the HitList export button in the left sidebar to view all records.