Open Close
Pauli, A., Althoff, F., Oliveira, R.A., Heidmann, S., Schuldiner, O., Lehner, C.F., Dickson, B.J., Nasmyth, K. (2008). Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons.  Dev. Cell 14(2): 239--251.
FlyBase ID
Publication Type
Research paper

Cohesin is a highly conserved multisubunit complex that holds sister chromatids together in mitotic cells. At the metaphase to anaphase transition, proteolytic cleavage of the alpha kleisin subunit (Rad21) by separase causes cohesin's dissociation from chromosomes and triggers sister-chromatid disjunction. To investigate cohesin's function in postmitotic cells, where it is widely expressed, we have created fruit flies whose Rad21 can be cleaved by TEV protease. Cleavage causes precocious separation of sister chromatids and massive chromosome missegregation in proliferating cells, but not disaggregation of polytene chromosomes in salivary glands. Crucially, cleavage in postmitotic neurons is lethal. In mushroom-body neurons, it causes defects in axon pruning, whereas in cholinergic neurons it causes highly abnormal larval locomotion. These data demonstrate essential roles for cohesin in nondividing cells and also introduce a powerful tool by which to investigate protein function in metazoa.

PubMed ID
PubMed Central ID
PMC2258333 (PMC) (EuropePMC)
Related Publication(s)
Supplementary material

Running rings around chromosomes to trim axons and target dendrites.
Dorsett, 2008, Dev. Cell 14(2): 156--158 [FBrf0216019]

Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Dev. Cell
    Developmental Cell
    Publication Year
    1534-5807 1878-1551
    Data From Reference