FB2025_02 , released April 17, 2025
Reference Report
Open Close
Reference
Citation
Melani, M., Simpson, K.J., Brugge, J.S., Montell, D. (2008). Regulation of cell adhesion and collective cell migration by Hindsight and its human homolog RREB1.  Curr. Biol. 18(7): 532--537.
FlyBase ID
FBrf0204355
Publication Type
Research paper
Abstract
Cell movements represent a major driving force in embryonic development, tissue repair, and tumor metastasis [1]. The migration of single cells has been well studied, predominantly in cell culture [2, 3]; however, in vivo, a greater variety of modes of cell movement occur, including the movements of cells in clusters, strands, sheets, and tubes, also known as collective cell migrations [4, 5]. In spite of the relevance of these types of movements in both normal and pathological conditions, the molecular mechanisms that control them remain predominantly unknown. Epithelial follicle cells of the Drosophila ovary undergo several dynamic morphological changes, providing a genetically tractable model [6]. We found that anterior follicle cells, including border cells, mutant for the gene hindsight (hnt) accumulated excess cell-cell adhesion molecules and failed to undergo their normal collective movements. In addition, HNT affected border cell cluster cohesion and motility via effects on the JNK and STAT pathways, respectively. Interestingly, reduction of expression of the mammalian homolog of HNT, RREB1, by siRNA inhibited collective cell migration in a scratch-wound healing assay of MCF10A mammary epithelial cells, suppressed surface activity, retarded cell spreading after plating, and led to the formation of immobile, tightly adherent cell colonies. We propose that HNT and RREB1 are essential to reduce cell-cell adhesion when epithelial cells within an interconnected group undergo dynamic changes in cell shape.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Genes (15)