Open Close
Pierce, S.B., Yost, C., Anderson, S.A.R., Flynn, E.M., Delrow, J., Eisenman, R.N. (2008). Drosophila growth and development in the absence of dMyc and dMnt.  Dev. Biol. 315(2): 303--316.
FlyBase ID
Publication Type
Research paper

Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt.

PubMed ID
PubMed Central ID
PMC2322934 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Dev. Biol.
    Developmental Biology
    Publication Year
    Data From Reference