FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Caussinus, E., Colombelli, J., Affolter, M. (2008). Tip-Cell Migration Controls Stalk-Cell Intercalation during Drosophila Tracheal Tube Elongation.  Curr. Biol. 18(22): 1727--1734.
FlyBase ID
FBrf0206360
Publication Type
Research paper
Abstract
Branching morphogenesis remodels epithelial tissues into tubular networks. This process is crucial to many organs, from the insect trachea to the vertebrate vasculature. Although Drosophila tracheal development has been well characterized morphologically and genetically, very little is known about the forces involved during morphogenesis. The repertoire of cell behaviors underlying tracheal primary branch remodeling is limited to cell migration, cell-shape changes, and stalk-cell intercalation (SCI), a process in which cells insert in between cells previously in contact with each other.Here, we identify the major forces that contribute to tracheal primary branch remodeling by using genetic and microsurgery experiments. As the tip cells migrate, they elongate the branches and create a tensile stress. This tensile stress triggers SCI, which, in turn, allows the branches to further elongate.The mechanism that we describe contrasts with "convergent extension by cell intercalation" acting during Drosophila germ band extension (GBE), where cell intercalation is the cause of epithelium elongation. Surprisingly, in tracheal branches, one or two leading cells produce enough mechanical power to intercalate many lagging cells. This may apply to other tubular networks.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference