Open Close
Shpargel, K.B., Praveen, K., Rajendra, T.K., Matera, A.G. (2009). Gemin3 is an essential gene required for larval motor function and pupation in Drosophila.  Mol. Biol. Cell 20(1): 90--101.
FlyBase ID
Publication Type
Research paper

The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.

PubMed ID
PubMed Central ID
PMC2613097 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Mol. Biol. Cell
    Molecular Biology of the Cell
    Publication Year
    Data From Reference
    Aberrations (1)
    Alleles (12)
    Gene Groups (2)
    Genes (8)
    Human Disease Models (1)
    Physical Interactions (3)
    Cell Lines (1)
    Natural transposons (1)
    Insertions (5)
    Experimental Tools (2)
    Transgenic Constructs (4)