FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Park, S.W., Kuroda, M.I., Park, Y. (2008). Regulation of histone H4 Lys16 acetylation by predicted alternative secondary structures in roX noncoding RNAs.  Mol. Cell. Biol. 28(16): 4952--4962.
FlyBase ID
FBrf0207223
Publication Type
Research paper
Abstract
Despite differences in size and sequence, the two noncoding roX1 and roX2 RNAs are functionally redundant for dosage compensation of the Drosophila melanogaster male X chromosome. Consistent with functional conservation, we found that roX RNAs of distant Drosophila species could complement D. melanogaster roX mutants despite low homology. Deletion of a conserved predicted stem-loop structure in roX2, containing a short GUb (GUUNUACG box) in its 3' stem, resulted in a defect in histone H4K16 acetylation on the X chromosome in spite of apparently normal localization of the MSL complex. Two copies of the GUb sequence, newly termed the "roX box," were functionally redundant in roX2, as mutants in a single roX box had no phenotype, but double mutants showed reduced H4K16 acetylation. Interestingly, mutation of two of three roX boxes in the 3' end of roX1 RNA also reduced H4K16 acetylation. Finally, fusion of roX1 sequences containing a roX box restored function to a roX2 deletion RNA lacking its cognate roX box. These results support a model in which the functional redundancy between roX1 and roX2 RNAs is based, at least in part, on short GUUNUACG sequences that regulate the activity of the MSL complex.
PubMed ID
PubMed Central ID
PMC2519712 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Genes (3)