Open Close
Tian, A.G., Deng, W.M. (2009). Par-1 and Tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes.  Dev. Biol. 327(2): 458--464.
FlyBase ID
Publication Type
Research paper

The formation of an anterior-posterior (AP) gradient of microtubules in Drosophila oocytes is essential for specification of the AP axis. Proper microtubule organization in the oocyte requires the function of serine/threonine kinase Par-1. The N1S isoform of Par-1 is enriched at the posterior cortex of the oocyte from stage 7 of oogenesis. Here we report that posterior restriction of Par-1 (N1S) kinase activity is critical for microtubule AP gradient formation. Egg chambers with excessive and ectopic Par-1 (N1S) kinase activity in the germline cells display phenotypes similar to those of egg chambers treated with the microtubule-depolymerizing drug colcemid: depolymerization of microtubules in the oocyte and disruption of oocyte nucleus localization. A phosphorylation target of Par-1, the microtubule-associated protein Tau, is also involved in oocyte polarity formation, and overexpression of Tau alleviates the phenotypes caused by ectopic Par-1 (N1S) kinase activity, suggesting that Par-1 regulates oocyte polarity at least partly through Tau. Our findings reveal that maintaining proper levels of Par-1 at correct position in the oocyte is key to oocyte polarity formation and that the conserved role of Par-1 and Tau is crucial for the establishment of an AP gradient of microtubules and for AP axis specification.

PubMed ID
PubMed Central ID
PMC2730513 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Dev. Biol.
    Developmental Biology
    Publication Year
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Genes (8)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (8)