FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Lee, J.H., Overstreet, E., Fitch, E., Fleenor, S., Fischer, J.A. (2009). Drosophila liquid facets-Related encodes Golgi epsin and is an essential gene required for cell proliferation, growth, and patterning.  Dev. Biol. 331(1): 1--13.
FlyBase ID
FBrf0208139
Publication Type
Research paper
Abstract
Epsin and epsin-Related (epsinR) are multi-modular proteins that stimulate clathrin-coated vesicle formation. Epsin promotes endocytosis at the plasma membrane, and epsinR functions at the Golgi and early endosomes for trans-Golgi network/endosome vesicle trafficking. In Drosophila, endocytic epsin is known as Liquid facets, and it is essential specifically for Notch signaling. Here, by generating and analyzing loss-of-function mutants in the liquid facets-Related (lqfR) gene of Drosophila, we investigated the function of Golgi epsin in a multicellular context. We found that LqfR is indeed a Golgi protein, and that like liquid facets, lqfR is essential for Drosophila viability. In addition, primarily by analyzing mutant eye discs, we found that lqfR is required for cell proliferation, insulin-independent cell growth, and cell patterning, consistent with a role in one or several signaling pathways. Epsins in all organisms share an ENTH (epsin N-terminal homology) domain, which binds phosphoinositides enriched at the plasma membrane or the Golgi membrane. The epsinR ENTH domain is also the recognition element for particular cargos. By generating wild-type and mutant lqfR transgenes, we found that all apparent LqfR functions are independent of its ENTH domain. These results suggest that LqfR transports specific cargo critical to one or more signaling pathways, and lays the foundation for identifying those proteins.
PubMed ID
PubMed Central ID
PMC2693448 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference
    Alleles (14)
    Genes (12)
    Natural transposons (1)
    Insertions (2)
    Experimental Tools (2)
    Transgenic Constructs (8)