Abstract
Aggressive behavior is observed across animal taxa and is likely to be evolutionarily conserved. Although potentially advantageous, aggression can have social and health consequences in humans, and is a component of a number of psychiatric disorders. As a complex genetic trait, it is modulated by numerous quantitative trait loci (QTL) with allelic effects that can vary in direction and magnitude and that are sensitive to environmental perturbations. Assays to quantify aggressive behavior in Drosophila melanogaster have been developed, making this an ideal model system in which to dissect the genomic architecture underlying manifestation of and variation in aggressive behavior. Here, we map QTL affecting variation in aggression between two wild-type Drosophila strains. We identified a minimum of five QTL in a genomewide scan: two on chromosome 2 and three on chromosome 3. At least three and possibly all five of these QTL interact epistatically. We used deficiency complementation mapping to subdivide two linked, epistatically interacting QTL of large effect on chromosome 3 into at least six QTL, and complementation tests to mutations identified four candidate quantitative trait genes. Extensive epistasis poses a serious challenge for understanding the genetic basis of complex traits.