FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Wang, T., Lao, U., Edgar, B.A. (2009). TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease.  J. Cell Biol. 186(5): 703--711.
FlyBase ID
FBrf0208794
Publication Type
Research paper
Abstract
Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.
PubMed ID
PubMed Central ID
PMC2742187 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference
    Alleles (14)
    Genes (14)
    Human Disease Models (1)
    Physical Interactions (1)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (8)