Open Close
Yao, C.A., Carlson, J.R. (2010). Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila.  J. Neurosci. 30(13): 4562--4572.
FlyBase ID
Publication Type
Research paper

A central question in insect chemoreception is whether signaling occurs via G-proteins. Two families of seven-transmembrane-domain chemoreceptors, the odor (Or) and gustatory receptor (Gr) families, have been identified in Drosophila (Clyne et al., 1999, 2000; Vosshall et al., 1999). Ors mediate odor responses, whereas two Grs, Gr21a and Gr63a, mediate CO2 response (Hallem et al., 2004; Jones et al., 2007; Kwon et al., 2007). Using single-sensillum recordings, we systematically investigate the role of Galpha proteins in vivo, initially with RNA interference constructs, competitive peptides, and constitutively active Galpha proteins. The results do not support a role for Galpha proteins in odor sensitivity. In parallel experiments, manipulations of Galpha(q), but not other Galpha proteins, affected CO2 response. Transient, conditional, and ectopic expression analyses consistently supported a role for Galpha(q) in the response of CO2-sensing neurons, but not odor-sensing neurons. Genetic mosaic analysis confirmed that odor responses are normal in the absence of Galpha(q). Ggamma30A is also required for normal CO2 response. The simplest interpretation of these results is that Galpha(q) and Ggamma30A play a role in the response of CO2-sensing neurons, but are not required for Or-mediated odor signaling.

PubMed ID
PubMed Central ID
PMC2858456 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    J. Neurosci.
    Journal of Neuroscience
    Publication Year
    0270-6474 1529-2401
    Data From Reference
    Aberrations (3)
    Alleles (42)
    Genes (18)
    Natural transposons (1)
    Insertions (3)
    Experimental Tools (3)
    Transgenic Constructs (31)
    Transcripts (2)