FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Buttitta, L.A., Katzaroff, A.J., Edgar, B.A. (2010). A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo.  J. Cell Biol. 189(6): 981--996.
FlyBase ID
FBrf0211029
Publication Type
Research paper
Abstract
Terminally differentiated cells in Drosophila melanogaster wings and eyes are largely resistant to proliferation upon deregulation of either E2F or cyclin E (CycE), but exogenous expression of both factors together can bypass cell cycle exit. In this study, we show this is the result of cooperation of cell cycle control mechanisms that limit E2F-CycE positive feedback and prevent cycling after terminal differentiation. Aberrant CycE activity after differentiation leads to the degradation of E2F activator complexes, which increases the proportion of CycE-resistant E2F repressor complexes, resulting in stable E2F target gene repression. If E2F-dependent repression is lost after differentiation, high anaphase-promoting complex/cyclosome (APC/C) activity degrades key E2F targets to limit cell cycle reentry. Providing both CycE and E2F activities bypasses exit by simultaneously inhibiting the APC/C and inducing a group of E2F target genes essential for cell cycle reentry after differentiation. These mechanisms are essential for proper development, as evading them leads to tissue outgrowths composed of dividing but terminally differentiated cells.
PubMed ID
PubMed Central ID
PMC2886355 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference