Open Close
Reference
Citation
Kuromi, H., Ueno, K., Kidokoro, Y. (2010). Two types of Ca channel linked to two endocytic pathways coordinately maintain synaptic transmission at the Drosophila synapse.  Europ. J. Neurosci. 32(3): 335--346.
FlyBase ID
FBrf0211498
Publication Type
Research paper
Abstract
Endocytosis at the presynaptic terminal is initiated by Ca(2+) influx through voltage-gated Ca(2+) channels. At the Drosophila neuromuscular junction, we demonstrated two components of endocytosis linked to distinct Ca(2+) channels. A voltage-gated Ca(2+) channel blocker, (R)-(+)-Bay K8644 (R-BayK), selectively blocked one component (R-BayK-sensitive component) without affecting exocytosis, while low concentrations of La(3+) preferentially depressed the other component (La(3+) -sensitive component). In a temperature-sensitive mutant, shibire(ts), at non-permissive temperatures, dynamin clusters were found immunohistochemically at the active zone (AZ) during the R-BayK-sensitive endocytosis, while they were detected at the non-AZ during the La(3+)-sensitive endocytosis. Immunostaining of the Ca(2+) channel alpha(2)delta subunit encoded by straightjacket (stj) was found within the AZ, and a mutation in stj depressed the R-BayK-sensitive component but enhanced the La(3+) -sensitive one, indicating that the alpha(2)delta subunit is associated with the R-BayK-sensitive Ca(2+) channel. Filipin bound to the non-AZ membrane and inhibited the La(3+) -sensitive component, but not the R-BayK-sensitive one. We concluded that the R-BayK-sensitive component of endocytosis occurred at the AZ and termed this AZ endocytosis. We also concluded that the La(3+) -sensitive component occurred at the non-AZ and termed this non-AZ endocytosis. These two types of endocytosis were modulated by various drugs towards opposite directions, indicating that they were differentially regulated. During high-frequency stimulation, AZ endocytosis operated mainly in the early phase, whereas non-AZ endocytosis operated in the late phase. Thus, intense synaptic transmission is coordinately maintained by synaptic vesicle recycling initiated by Ca(2+) influx through the two types of Ca(2+) channel.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Europ. J. Neurosci.
    Title
    European Journal of Neuroscience
    Publication Year
    1989-
    ISBN/ISSN
    0953-816X
    Data From Reference